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ABSTRACT

In this thesis we derive a lattice structure to realize linear phase transfer

functions and develop an adaptive algorithm for continuously updating the lattice

reflection coefficients. The lattice structure is considered because of its superior finite

wordlength performance compared to transversal structures. The adaptive lattice

algorithm developed in this thesis has been applied to estimate the sinusoidal

frequencies as part of Prony's method. Results of computer simulation supporting the

theory are reported.
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I. INTRODUCTION

Every finite-impulse response (FIR) filter has two distinct properties Ref. 5]

first, it is always stable; second, if it is not causal, it can always be made to be causal
by introducing a finite delay. FIR filters can be designed so that their frequency

responses have an exactly linear phase characteristic. FIR filters with linear phase are

important in applications like speech processing and data transmission, because in
these applications a nonlinear phase filter is harmful. The symmetry property of the

linear phase FIR filters, however, helps reduce the number of coefficients by nearly one

half resulting in substantial computational savings.

The various filter realizations, or structures that are frequently considered are the
direct form, the cascade form, the parallel form, and the lattice form. The lattice form

realization is of particular interest because of its superior numerical performance, and

modularity in the structure. Tue operation of a lattice filter is compieteiy descr.I, ey
specifying the sequence of reflection coefficients that characterize the individual stages

of the filter.

Conventionally an adaptive filter is composed of a tapped delay line or
transversal structure with adjustable coefficients or weights and an adaptive algorithm
which updates the coefficients continuously based on some performance criterion. The
design of a fixed coefficient filter is based on the prior knowledge of both signal and

noise. Adaptive filters, on the other hand, have the ability to adjust their own
parameters automatically, and their design requires little, or no a priori knowledge of

signal or noise characteristics [Ref. 14]. However, the designer has to choose the order
of the filter and the type of the algorithm. Also the adaptive filter usually requires a

large initial transient time (i.e., the initial filter convergence period).

The least-mean-square (LMS) adaptive algorithm minimizes the mean square
.rror .Ic . .atern- the .iiter vc'Ucient vector _( ,i at 2act Amrur_,

*nstanz. 7 .:e 2r'gmai .idro,-ioir L,, aigoriiam is 3-k )pc'-

where 11 is a convergence factor controlling stability and rate of adaptation [Ref. 151.

The algorithm is based on the method of steepest descent, moving b(k) in proportion
to the instantaneous gradient estimate of the mean square error. The successive

orthogonalization provided by the lattice offers advantages in adaptive convergence

rate which cannot be achieved with tapped delay lines [Ref. 17,18].
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Recently, Prony's method has been applied to the estimation of spectral lines in

noise (Ref. 11]. It has been shown that the Prony's method yields better spectral

estimates than a companion spectral estimation technique, called Pisarenko's method

(Ref. 101. Also it has been established that the filter structure involved in Prony's

method has a linear phase property which is not the case zor Pisarenkos method [Rei
il].

The thesis investigates the application of lattice structures in Prony's method of

spectral line estimation. The complete solution to Prony's method consists of three

steps: (i) representing a given process of M sinusoids in noise in terms of complex

exponentials, (ii) finding roots of a symmetric polynomial, and (iii) estimating the

frequency, phase and amplitude information. In this thesis, however, we have

emphasized only the frequency estimation problem. Here we derive an adaptive lattice

structure to realize linear phase transfer functions which will be used to estimate the

sinusoidal frequencies as part of Prony's method. The scope of the thesis consists of

obtaining a linear phase lattice structure, developing a least mean square (LMS) error

based adaptive algorithm, and testing the lattice structure and the algorithm by means

of computer simulation.

The thesis is organized as follows. In Chapter II, we present a brief review of

Prony's method of representing a given process in terms of a set of complex

exponentials, and then address the problem of estimating spectral lines using this

method. We show that the original Prony's method has to be modified slightly in

order to apply it to the spectral line estimation problems. In Chapter III, we discuss

the basic concepts of the linear phase FIR filter and the related lattice structure. We

show three examples of obtaining the lattice structures for both linear phase and non-

linear phase FIR transfer functions (Appendix A). In Chapter IV, we briefly discuss

the least-mean-square (LMS) adaptive algorithm that results from attempting to

minimize the mean square error and present a summary of some LMS algorithms for

lattice that have been reported in the literature. Also included are some computer

Irn.1L..:on .esui:s. :n ;, -xter V, ve -re,cnt : ucrz'-t:on : i :tow .,S .au ?"

aaapt i',e aia'cL aigoritrn anu xtenu ,: -c i.k iicar pihasc case as w ie ' Pew
algorithm is then used in the estimation of spectral lines in white noise. Results of

simulation are included.
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II. PRONY'S SPECTRAL LINE ESTIMATION

A. INTRODUCTION
In its original form, Prony's method analyzes processes involving simple, or

damped harmonics using complex exponential functions as coordinate functions. On

the other hand, the well known Fourier analysis consists of representing a given
process in terms of a set of sine and cosine functions. Recently, Prony's method has

been applied to the estimation of spectral lines in noise [Ref 11. It has been shown
that the Prony's method yields better spectral estimates than a companion spectral

estimation technique, called Pisarenko's method, in terms of bias, spurious responses,
and the computational complexity [Ref. 10].

In this chapter, we present a brief review of the Prony's method of representing a

given process in terms of a set of complex exponentials, and then address the problem
of estimating spectral lines using this method. We show -hat original Prony's method

has to be modified slightly in order to apply it to the spectral line estimation problems.

B. PRONY'S METHOD

Consider that the given process, x(k), consists of n distinct sinusoids, then x(k)
can be approximated by an expression of the form

x(k) [Ai cosoik + Bi sinoik]  (2.1)

where the o.i's are sinusoidal frequencies. The above approximation can be considered

as a special case of an exponential approximation given by [Ref. 291

x(k) = C i (2.2)

where m = 2n and the ai's are identified as 0 i and -(oi. The values of oi can be

estimated, by Prony's method, assuming that the data are known at k = 0, 1, ..., N-1.
From Eq.(2.2), we can obtain the following set of equalities

12



C1  +C 2  + +C - x(O)

C1 e a l +C2 ea 2  + ".. +C ejam =x(l)

C1 ej2a, + C2 j2 a2  + ... + Cm eJ2am - x(2) (2.3)

C1 ei(N'l)aj + C2 ej(Nl)a2 + ... + Cm ej(N'l)am x(N-l)

Now we have a set of N equations with 2m unknowns, namely, Ci and ai (i= 1, 2,

m) which can be solved exactly if N - 2m, or approximately by the method of least
squares if N> 2m. Also note that the N equations are nonlinear in the exponential

terms e]ai. Let ejai, i= 1, 2, ..., m, be the roots of the equation [Ref. 29].

ejma + Qlej(m-l)a + u2ej(m-2 )a + ... + am.leJa + a m  , 0 (2.4)

In order to determine the coefficients ai (i - 1, 2, ... , m), we multiply the first equation

in Eq.(2.3) by am p the second equation by ami l ... , the mth equation by a, and the

(m+ l)th equation by 1, and add the results. In this way, we can obtain the (N-m)
linear equations. From Eq.(2.2), we can obtain the following set of equalities

x(m) + x(m-1) a1 + x(m-2) a2 + ... +x(O) a m = 0

x(m+1) + x(m) a I + x(m-1) a 2 + ... +x() a m  0

(2.5)

x(N-l) + x(N-2)al + x(N-3)a 2 + ... +x(N-m-l)a m = 0

13



Since the data x(k), k = 0, 1, 2, ..., N-i, are known, this set of equations can be solved
for the m a's if N > 2m. After the a's are determined, eiat, i = 1, 2, ..., m, are found
from Eq.(2.4). The set of equations in Eq.(2.3) then becomes linear in terms of Ci, i =
1, 2, ..., m. The C's can be determined from the first m equations, or determined
approximately by applying the least squares method to the entire set of equations. The
nonlinearity associated in finding ejai, which is related to the frequencies jo) and -jobi, is
concentrated in Eq.(2.4). The above procedure is known as Prony's method.

Now, in the case of Eq.(2. 1), since the roots of Eq.(2.4) occur in reciprocal pairs,
Eq.(2.4) must be invariant under the substitution of e-jai for eJai, so that we must have
a2n 1, U(2n) = a1, ... , an+ 1 an-l Thus Eq.(2.4) becomes

ej2n* + aI eJ(2n-1)c + + an.I ej(n+ 1)( + an ejno

+ an.I ej(n'l)a) + ... + a I e]0 + I = 0

or

eJno) [ (en) + e-jn )) + a, (ei(n- 1)(o + e-J(n-l)o) + ... +

an-l (ej(  + e-J() + an = 0

since ejn() # O, we have

2 cosno) + 2 aI cos(n-l)o) + ... + 2 an1 coso + an = 0 (2.6)

Now :aoting :hat m= i. and iptiving :he Tbove svrmnetrv . ( (s to Eq.(2.5, .vieIds

iRef. ii
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{x(O) + x(2n)) + {x(l) + x(2n-1)} al + ... + {x(n-1) + x(n+ 1)} Ctn-l

+ x(n) an 0

(x(1) + x(2n+ 1)) + {x(2) + x(2n)) a1 + ... + {x(n) + x(n+ 2)} an.1

+ x(n+l)an = 0

(2.7)

{x(N-2n-l) + x(N-1)} + {x(N-2n) + x(N-2)} a + ... + fx(N-n-2)

+ x(N-n)} an-I + x(N-n-1) an = 0

Eq.(2.7) consists of a set of N-2n equations and n unknowns. This set can be solved

exactly for the a's if N= 3n, or solved approximately by the least squares method if

N > 3n, and then the W's are determined from Eq.(2.6).

C. ESTIMATION OF FREQUENCY, AMPLITUDE AND PHASE
If a process under measurement contains an unknown number of sinusoids of

unknown frequencies and amplitudes, a variant of Prony's method can be used to
determine the number of sinusoids and their associated frequencies and amplitudes. As

noted above, ?ronvy' method is a technique ,or modeling data of equaily spaced

iamples byw a iinear combination of exponentials. An oxponentiai :urvc h-a\'in \
exponentials terms can be determined from the 2M data measurements. Each

exponential term Aieaik has two parameters - an amplitude Ai and an exponent ai
where a. can be real or imaginary. For the case where only an approximate fit with M
exponentials to a data set of N samples is desired, such that N> 2M, a least squares

estimation procedure is used.

15
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The model assumed is a set of M exponentials of arbitrary amplitude, phase,
frequency and damping factor. A process consisting of M real undamped (a is

imaginary) sinusoids can be expressed as

x(k) (aizk + )Z*k (2.8)

=il A. cos(2irfkT + 0i)

with a, = (A1/2)eJei and z,= ej2 xfiT, where A, is the amplitude, f, is the frequency and 0i

is the phase of the ith sinusoid, respectively, and T is the sampling interval.

Finding {Ai, Oi, fj} and M that minimize the squared error is a difficult nonlinear

least squares problem. Prony's method solves two sequential sets of linear equations

with an intermediate polynomial rooting step that concentrates the nonlinearity of the
problem in the polynomial rooting procedure (similar to Eq.(2.4)).

Define the polynomial, B(z), which has zi and zi as its roots, given by

B(z) -_ (z - 7Xz - zi*) j b. z2M -j = 0 (2.9)I--=0"-

with b0 = I and the b. being real coefficients. Since the roots are of unit modulus occur

in complex conjugate pairs, then Eq.(2.9) must be invariant under the substitution z-1

for z. Therefore, Eq.(2.9) can be written as

z2M B(lI/z) = z2M i 4 b zj2M -2 b. zi = 0 (2.10)

Comparing Eqs.(2.9) and (2.10), we may conclude that b --b2M-j for j=0,1, ... ,M,

with b0 - b2M = 1. Thus the requirement for complex conjugate root pairs of unit
modulus is implemented by constraining the polynomial coefficients to be symmetric
about the center element. Hence the rcalization of B(z) is a linear phase FIR filter.

Based on order 2M, a linear prediction error can be written as

16
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C(k) - b. [x(k +j) + x(2M -k +j)] (.1

which reduces the number of coefficients required by one-half.

The coefficients bp, b,, b are determined in a least squares fashion by

minimizing the total squared error.

E = *j21 c-(k) (2.12)
i=0

which yields the normal equations

iD bk [ [x(2 M-k+ i) + x(k+ i)] [x(2M-j +i) + x(j +i)]] - 0 (2.13)
j=0 1=O

for k-1, ... ,M

This equation can be solved recursively for increasing order M.

From the estimated f{bj} values, the {z1} are determined using Eq.(2.9). This gives

the frequency estimates.

=tan-I [Im(zi)/Re(z1 )I / 2itT (2.14)

To obtain the {ai) a second set of normal equations is solved,

N
t 2Re zk]) x(j) (2.15)

for k=0,1,,. ,M

17



The set {c1) provides both amplitude (Ai),or power, and phase (0j) information:

A, = I a, 1 (2.16)

0i= tan'l ( Im(bj)/Re(b) l (2.17)

In the foregoing we have shown that the frequency estimation as part of Prony's

method requires a polynomial with a linear phase property. In the next chapter, we

show that a lattice structure can be utilized to implement a linear phase transfer

function.

OP
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III. LINEAR PHASE FIR FILTERING

A. INTRODUCTION

Every finite-impulse response (FIR) filter has two distinct properties [Ref. 5]

first, it is always stable; second, if it is not causal, it can always be made to be causal

by introducing a finite delay.

FIR filters can be designed so that their frequency responses have an exactly

linear phase characteristic. FIR filters with linear phase are important in applications

like speech processing and data transmission, because in these applications a nonlinear

phase filter is harmful.

The impulse response sequence of a linear phase FIR filter exhibits a kind of

symmetry, e.g., h(n) - h(N-l-n) for n = 0, 1, ..., (N/2)-I (assuming that N is even).

In general, FIR filters require a large number of coefficients to adequately meet with
the required filter specifications. The symmetry property of the linear phase FIR

filters, however, helps reduce the number of coefficients by nearly one half resulting in
substantial computational savings.

The various filter realizations, or structures that are frequently considered are the
direct form, the cascade form, the parallel form, and the lattice form. The lattice form

realization is of particular interest because of its superior numerical performance, and

modularity in the structure. Lattice realizations have been successfully utilized in

filtering and spectral analysis, and in modeling of some physical process like speech,

geophysical data etc. [Ref. 8]. The operation of a lattice filter is completely described

by specifying the sequence of reflection coefficients that characterize the individual

stages of the filter.

In this chapter, we will discuss the basic concepts of the linear phase FIR filter

and the related lattice structure. And finally, we will show three examples of obtaining

-~e :;it~cc rucrurcs ei h....e .ind -on-linear "ihase IR -rans:r'r."

.unctions Aotenc(x""

B. LINEAR PHASE FIR FILTERS IREF. 3]
Let {h(n)} be a causal finite duration sequence defined over the interval

0 : n 5 N- I having the linear phase symmetry property given by h(n) - h(N- 1-n). The

z transform of {h(n)} can be written as

19
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-n0

If N is even, then Eq.(3.I) can be rewritten as

H(z)= (N h(n)zn + V h(n)z-n
n n= N/2

Now applying the symmetry property of h(n) in the second term on the right hand side

yields

H(z) - (N/- h(n)z-n +(N )-I h(N- In)z(N-1-n)
n=O n=0

which can be simplified to

H(z) = (Nj)-I h(n) (zn + z"(N- l ' n)}  (3.2)
n =0

If N is odd, then Eq.(3.1) becomes

H(z) - [(N-IV2]-l h(n)[z-n + z-(N-1-n) l + h(-1 Z-[(N -1)/21 (3.3)
n=0 2

If we evaluate Eqs.(3.2) and (3.3) for z- eW¢ , we obtain the discrete Fourier transform

of the filter sequence h(n) defined as

H(e](0) = h(n) e-Jin (3.4)
n=0

For the case when N is even, we then have the discrete Fourier transform

20



i(e) -C, (N-)/2 [( 2h(n)cos[ o{n-(N-l)/2)}]] (3.5)
n-0

and for N odd, we obtain

I(eJW° ) = e' W(N ' 1)/ 2}[h((N ' l )/ 2} + (.- 21i(n) cos[won-(N-l)/2)}J. (3.6)
n=O

In both cases above, the sums in brackets are real, implying a linear phase shift

corresponding to a delay of(N-l),'2 samples. Figures 3.1 and 3.2 show the direct form

realizations of an FIR f'dter with linear phase for both N even and N odd cases.

-1 -1

11Z

(0) '1)' 2h( ) h(h

z0 
2

y (n)

Figure 3.1 Direct-form realization for an FIR filtcr with linear phase (N= even).
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-1 -i. -i

x (n)

Z

0 D4 - 04 - -.
y (n)

Figure 3.2 Direct-form realization for an FIR Iilter with linear phase (N= odd).

C. LATTICE FILTERS IREF. 41

The basic single section lattice structure is shown in Figure 3.3 where x(n) is the

x(n) and fl(n) and gl(n) are generally known as the forward and backward prediction

errors, respectively. The defining equations of the lattice are given by

fo(n) - go(n) = x(n)

f,(n) - fo(n) + klg(n-l) (3.7)

g, n) - k }, n - -.{ i-l)

where k is called the lattice reflection coefficient. If another section is cascaded with

the first one the resulting equations for the next order prediction errors are given by
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f2(n) - f,(n) + k2g(n-1) _

g2(n) - k2f1(n) + gl(n-I)

Substituting for fl(n) and gl(n-1) from Eq.(3.7) yields

f2(n) = x(n) + fk 1 +k 1 k,}x(n-l) + k2x(n-2) (3.8)

or

f2(n) x(n) + b2 ,1x(n-) + b2 2 x(n-2)

and

g2(n) = k2x(n) + {k, +k1 k2}x(n- 1)4 +x(n-2) (3.9)

or

g2(n) - b 2 ,2 x(n) + b2,1 x(n-1) + x(n-2)

where b2,1 =k(I + k2 ) and b2,2 k2.

Thus, by induction, for a cascade connection of M lattice sections we have the general

expressions

,i -0 M 'ix(n 'i)"

gM (n) -- -0 bM ,M ix(ni) (3.10)

where bMo= 1. Eq.(3.10) represents the FIR filter type equations to obtain the Mth

order forward and backward prediction errors. Now taking the z-transform of

Eq.(3. 10) yields
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_MZ b (3.12)(Z

GM(Z)= bM,M-iZ' X(z) (-2

For an Unit Impulse input, iLe., when X(z)= 1, FNI(z and G\ 1I(z) represent the forward

and backward prediction error filter transfer functions, respectively, and

GMMz z-'% FM(z')(313

Figure3.3 Lttice3.ci3)
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kM= bMM (3.14)

In fact, the FIR like prediction error filter coefficients can be iteratively calculated

starting from Eq.(3.14). The algorithm, to calculate the filter coefficients bM, i , also

makes use of the well known lattice property that an Vth order lattice contains all

prediction filters of orders m:5 M. Now consider the mth section (1 - m-5 M) in the
cascade connection of M lattice sections which can be described by the following

equations:

Fm(Z) = Fm.l(Z) + kmZIGm-i(Z) (3.15)

Gm(Z) - kmFmil(Z) + z'Gm-i(Z) (3.16)

Eq.(3.16) can be rewritten as

Gmil(Z) = ZGm(Z) - zkmFm.(z) (3.17)

Substituting Eq.(3.17) into Eq.(3.15) yields

Fm(z) = Fm (z) + km{Gm(z)-kmFm_ 1 (2)} (3.18)

Therefore, the (m-l)th order forward prediction error transfer function can be written

in terms of the mth order forward and backward prediction error transfer functions as

follows:

Fm-l(Z) = Fm(z) - kmGm(z)
1 - k2  (3.19)

~r~m
wxhere km =',. :;6 r Reail;nz Ej.,3. -ha, .s.

Gm(Z) z-r" Fm(z-) (3.20)

By substituting Eq.(3.20) into Eq.(3.19) we find that
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Fm (Z) = Fm(Z) - !nzzmFm( z(. 
)

I k 2  

.
Thus, from Eq.(3.21) we see that the next lower order polynomial Fm.l(z) can be

calculated knowing Fm(z). Following the Foregoing procedure we can fInd

kin.i = bm.i,m.i from Fm_1(z), and also obtain .Fm.2(z). This way, for a given Mth

order polynomial FM(z), we can determine all the lattice reflection coefficients km,
m= M, M-1, ..., 2, 1. This procedure is known as the step-down procedure [Ref. 1],

and can be summarized as follows: Let the given Mth order polynomial be

FM(Z) = IV bM izi (3.22)

and by replacing M with m we have an mth order the polynomial for m lattice sections

Fm(z) = - bm,iZi (3.23)

where m= M, M-I, ..., 2, 1. We now define another polynomial given by

Fm(z' 1 ) =i bmiz' (3.24)

As we step through the procedure from m= M to m= 1 Eq.(3.24) can be expressed as

- -1 b z i

Define km= bm'm and obtain the m-Ith order polynomial as follows:
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SFro(z) - kmz'mFm (z) (326)

Fm'(z) k - 2  
(326*m

Substituting Eqs.(3.23) and (3.24) into Eq.(3.26) yields
in~ b~ l~ z~i i' b m iz ' i - k  m b  .z '

"'m i .'m ,m -i

bm b l.1 ,jZ' . bmi i I

I k 2

I bm- ,iz i i-bmiZ'i- kmi_4m,m.iz'i 27)

1 - k2 m

Then, by equating the coefficients of like powers of z on both sides of Eq.(3.27), we

obtain the computational expression for the (m-l)th order polynomnial coefflcients as

bbi - kmbm'm'i (3.28)m- I - k2m

where m = M, M-l, ..., l and i = 0, 1, ..., m-I, km - bmm and Ikml< I for a

minimum phase polynomial Fm(Z).

D. LINEAR PHASE FIR LATTICE FILTER

In the foregoing we considered obtaining a lattice structure from a given FIR

transfer function, and vice versa. In what follows we will deal with a special case of

FIR filtering, namely, the linear phase FIR filter. Let {h(n)) be a causal finite duration

linear phase sequence defined over the interval 0: n5 <N-1. From Eqs.(3.2) and (3.3).

.he z .nsir - hi .- :an '-e vr:ttcn as

HNI(Z) = FM(z) + z "D GM(Z) (3.29)
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k~~ k(y(k
MM

Figure 3.4 Linear Phase FIR Lattice F lIter.

where FM%(z) and G;,~)are forward and backward filter transfer functions,

respectively, and D represents the number of unit delays. We now consider the N odd

and N even cases separately.

N odd case: For N odd, Eq.(3.29) can be written as

1IN-l(z) a0 + a 1z1 + a2 z-2 + . + a(N. 3y12z.(N-3)/ 2 + a(N,.1,2ZN-)

aY N. -- 32) 4- +

a0 + a 1z'I + a2 z 2 + . + a(N 3 ),2 z-(N-3 )12 + 2 (l,/2) a(N1), 2 z.(NI- )/ 2

+ a(N..3),2 z(N +1),'2 + *.+ a2z -(N- 3) + alz-(N-2 ) + a0 zd(N-)
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Note that we are splitting the coefficient a(N. )/2 into two coefficients of value

(l12)a(N 1)/2 each.

H.,l.(z) =a 0 +~ alzz' + a2 z-2 + -. + a(N /2\(N3/ (3.30)

+ (1/2) a(NI)1 2 z (Nl) 1 2 + Z-(N1)/2 [(l/2 )a(N.I)12

+ a(N-3 ),2z' + ... + a2 z-(N$-)' 2 + az(-)1

+ aoz{(N-1)12 I

HNIl(z) = FM(z) + Z-(N-1)1/2 GM(z) (3.31)

where the order of the polynomials FM(z) and GM(z), M = (N-1)/2, and the

number of unit delays, D - (N-1)/2, the forward transfer function,

FM(z) =ao + alz-1 + .. + a(N-3 ),2 z-(N-3 )/2 + (1/2)a(NI), 2 z(N-I)/ 2  (3.32)

FM(z'I) = a0 + alz + .. + a(N- 3)/2z(N-3)/2 + (l/2)a(N-Iy 2 z (N1 I)/2  (3.33)

and the backward transfer function,

+ + alz-(N'-3 )/2 +aoz'(NI1)1/ 2
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N even case: For N even, Eq.(3.29) can be written as

HN.Iz) a0 + a 1  + a~ 2+ ... + a(>4 2 )I 2 z-(N-2)/2 + a(N 2)/ 2Z zN/2

+ ... +a 2 z-(N-3 ) + alz(N 2 ) -a 0 z-(N 1 )

HN.l(z) - a0 + alzz' + a2 z-2 + ... + a(N 2 )/2z(-)/2 (3-35)

+ ZN/2 [a(N2/ + --+ az-(-

+ alz-(N-4 )/2 + a0z-(N-2)/' 2

HN!I(z) = FM(z) + zN/ GM(z) (3.36)

where the order of the polynomials FMl(z) and GM(z), M = {(N/2)-l}, and the

number of unit delays, D = N/2, the forward transfer function,

FM~z) =a 0 + alz-1 + a2 z'2 + .. + a(N 2 )1 2 zG-)/ 2  (3.37)

Fm(z') =a 0 + aiz + a2 z2 + .. + a(N 2 )/ 2 z(N-2 )/2  (3.38)

and the backward transfer function,

GM(z) Z-(N-2)/2 FM(z'1) = a(,N-2)/2 + .. + a2 Z(N-6 )/12  (3-39)

+ .*+ alz-(N-4 )/2 +ao-N2/
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Figure 3.4 shows a linear phase FIR lattice realization where the filter output is

obtained by adding the Mth order forward prediction error, and the Mth order delayed

(by D unit delays) backward prediction error. Combining the discussion in this section

and that in Section (III.C), we can summarize the algorithm for converting a given

FIR transfer function into a lattice structure as follows:

(i) Find if N is even, or odd

(ii) For N odd: M- (N-l)/2, D - (N-l)/2

(iii) For N even: M {(N/2)-I}, D - N/2
(iv) From FM(Z), obtain M reflection coefficients as discussed in Eqs.(3.22) to (3.26)
(v) Implement the lattice as shown in Figure 3.4

E. LATTICE REALIZATION OF A GENERAL FIR TRANSFER FUNCTION
In the foregoing we have considered a polynomial FM(z) with bMo 1. However, in
general we have bM,0# I. In this section, we shall modify the lattice realization

algorithm presented in Section (III.C) to suit an arbitrary FIR transfer function with

bM,0(o I [Ref. 221. The mth order polynomials Fm(Z) and Gm(Z) can be obtained

from Eqs.(3.15) and (3.16):

Fm(z) = smFml(Z) + kmz'IGmil(Z) (3.40)

Gm(Z) = kmFm. I(z) + sm z' Gm- Iz) (3.41)

where the coefficients sm = bm,0 and km = bm,m are recognized as the reflection

coefficients. Eq.(3.41) can be rewritten as

Gm-i(z) 1 s z -Gm 1 m km z Fm.l(z) (3.42)

Substituting Eq.(3.42) into Eq.(3.40) yields

Frn(z) = s, F.l(z) - s' m k,{G -(Z- kmFrn(Z (3.43,

Thlerefore, the km-!) order vrward predictlon error transier Lunction ;an 3e
written in terms of the mth order forward and backward prediction error transfer

functions as follows:
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f O (k ) f (k ) M  f m f (k )

xlk)

0 (k g 1 (k) (k

Figure 3.5 FIR Lattice.

F . s Fl(z) - kmGm(Z) (3.44)rn-i' S . k2m
$2mZ) m s

where sm#& km. Substituting Eqs.(3.20). (3.23) and (3.25) into Eq.(3.44) yiclds
0.

s b z' k rnZ -1
in bm. l~i - " SMm mbm ' k m rn,m.iz

s2 -k
2

:n m

,m 1 ,i m i miz km - brn,'iz -
b (3.45)

Sm k2

32



From Eq.(3.45), we obtain the computational expression for the (m_ l)th order

polynomial coefficients is

s b ' k b
bmM m .. rn .M-L (3.46)

where m M, M-,I,..and i -,1, ... , m- , km bmm, sm bmO and sm >Yk
for a mnimumn phase polynomial Fm(z). It may be noted that sm = I formr 1, 2,

M-1. This indicates that we have only one s-coefficient, i.e., sM' hc eursa

extra multiplication in the Mth lattice section as shown in Figure 3.5.
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IV. LMS ALGORITHM

A. INTRODUCTION

Conventionally an adaptive filter is composed of a tapped delay line or

transversal structure with adjustable coefficients or weights and an adaptive algorithm
which updates the coefficients continuously based on some performance criterion.

The design of a fixed coefficient filter is based on the prior knowledge of both

signal and noise. Adaptive filters, on the other hand, have the ability to adjust their
own parameters automatically, and their design requires little, or no a priori knowledge

of signal or noise characteristics [Ref. 14]. However, the designer has to choose the
order of the filter and the type of the algorithm. Also the adaptive filter usually

requires a large initial transient time (i.e., the initial filter convergence period).
For stationary stochastic inputs, the mean square error, the difference between

the filter output and an externally supplied input called the 'desired response", is a
quadratic function of the filter coefficients, a paraboloid with a single fixed minimum

point that can be sought by gradient techniques [Ref. 16].

In the previous chapter we showed that the operation of a multistage lattice filter

is completely described by specifying the sequence of reflection coefficients that

characterize the individual stages of the filter. In this chapter we briefly discuss the

least-mean-square (LMS) adaptive algorithm that results from attempting to minimize
the mean square error and present a summary of some LMS algorithms for lattice that

have been reported in the literature. Also included are the computer simulation results.

The least-mean-square (LMS) adaptive algorithm minimizes the mean square
error E(k) by recursively altering the filter coefficient vector E(k) at each sampling

instant. The original Widrow-Hoff LMS algorithm is B(k+1)=_B(k)+2pe(k)X(k),
where p is a convergence factor controlling stability and rate of adaptation [Ref. 15].

T'e ilzorithm ;s tbased n te rnethod of iter" esz Thsccnt. movin t een -rono-

to the nstantaneous !raciient -stimate oi the mean .uare error.
When the filter input is stationary, the backward prediction errors are orthogonal

to each other, with the result that the successive stages of the lattice filter are

decoupled from each other [Ref 8]. This means that the global optimization of a

multistage lattice filter may indeed be accomplished as a sequence of local optimization
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problems, one at each stage of the lattice filter. Accordingly, it is a straightforward
matter to increase the order of the lattice filter by simply adding one or more stages
without affecting the earlier design computations. The successive orthogonalization
provided by the lattice offers advantages in adaptive convergence rate which cannot be

achieved with tapped delay lines [Ref. 17,181.

B.. SUMMARY OF THE LMS ALGORITHM
The LMS algorithm uses an estimate of the gradient of the mean square error obtained
from the adaptive linear combiner which is a combination of a transversal structure
and an adder. The adaptive linear combiner can be shown in two basic ways,
depending on whether the input is available in parallel form (multiple inputs), or in

serial form (single input) [Ref. 6].
-w

1"
x0 ()b 0 d W

d (k)(k)

t.

Xl_ W bN -W

W b

Figure 4.1 Parallel Form.
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4.

Figure 4.2 Serial Form.

In the following we present a brief derivation of the LMS algorithm. Let us choose the

single input form, then the filter output is given by

y(k) bo(k)x(k) + b1 (k).x(k-I) + ... + bNlI(k)x(k.N+ I)

0 Zib(k) x(k- i)

I KT(k) N(k)

- Kk)X'k) '.

where X arnd are the input signal vector and the filter coefficient vector, respectively

and (N-1) is the order of the filter. The input signal vector X and the filter coefficient

vector Li are defined as

36



x~k) L13k (k)

x(k-i) b 1(k)

Therefore, the output y(k) is equal to the inner product of KX(k) and (k). .

The error e(k) is defined as the difference between the desired response d(k) and

the actual response y(k),

e(k) = d(k) - LCT(k)g(k) =d(k) - T(k)X(k) (4.2)

The purpose of the adaptive algorithm is to adjust the filter coefficients of the adaptive 5

linear combiner to minimize the mean-square error. A general expression for mean
square error as a function of the filter coefficient values, assuming that the input
sian als a-nd the desired response are statistically stationary and that the tilter

coefficients are fixed, can be derived in the following manner [Ref 6]. The squared
error is 

1~

e (k) d d(k) - 2d(k)XT(k)9(k) + BT(k)X(k)XT(k)LI(k) (4.3)

Taking the expected value of both sides yields the mean square error,

2TE[e (k)1 = Etd2 (k)] - 2 E[d(k)ZT(k)] B(k) + BT(k) E[X(k)XCTk) (4)

Defining the vector P as the cross-correlation between the desired response and the

.nput vector, wve 1have

P = E [d(k) (k)] (4.5) '

Similarly the input autocorrelation matrix R is defined as
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6 - E [ 2(k) 2T(k)] (4.6)

Thus the mean-square error can be expressed as

c(k) = E[e2(k)] = Eld 2(k)] - 2 ET B(k) + gT(k) fi g(k) (4.7)

The gradient Vz(k) of the mean square error function is obtained by differentiating

Eq.(4.7) xith respect to the filter coefficient vector as follows:

"E[e 2 (k)]

ab0 (k)

V (k)= -2 P +2 _"R B(k) (4.8)

OE[e 2 (k)]
0 bN i(k)

The LMS algorithm is an implementation of the method of steepest descent.

According to this method, the next filter coefficient vector is equal to the present filter

coefficient vector B(k) plus a change proportional to negative of the gradient, Vc(k):

(k+ 1) = R(k)- p Vc(k) (4.9)

The parameter i is the factor that controls stability and rate of convergence. In other
words, the first term on the right hand side consists of the past information and the

second term represents the new, or updated information.

The LMS algorithm estimates an instantaneous gradient in a crude but efficient

manner by assuming that e'k . -he square of a single error sample. is an estimate of

,-,c mean-souare ,-rror and by differcntating .- k) vzh resnec: :o 3(k). The cs:imae.

gradient is given by the following expression
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8e (k) Oe(k)

ab0 (k) Ob0 (k)

Vc(k) = - 2 e(k) (4.10)

ae2(k) ae(k)

The estimated gradient components are related to the partial derivatives of the

instantaneous error with respect to the filter coefficient components. Thus the
expression for the gradient estimate can be simplified to

Vc(k) = -2 e(k) X(k) (4.11)

Using this estimate in place of the true gradient in Eq.(4.11) yields the Widrow-Hoff

LMS algorithm

B(k+ l) - B(k) + 2 p e(k) _,(k) (4.12)

Since the filter coefficient changes at each iteration are based on imperfect gradient

estimates, we would expect the adaptive process to be noisy, that is, it would not

follow the true line of steepest descent on the performance surface. The LMS algorithm
can be implemented in a practical system without squaring, averaging, or

differentiation and is elegant in its simplicity and efficiency. Each component of the

gradient vector is obtained from a single data sample without perturbing the filter
coefficient vector.

C. ADAPTIVE LATTICE ALGORITHMS

T',he "iarameters -o iodate i i muitistage lattice ire its reilcoton ,c',Ticent.

Severai ,ieonihms nave icen .rooseca ;n :nc niterature :or :nnnrtz ..e .::t2c

reflection coefficients [Ref. 7,8,17,18,20,23-281. In this section we briefly summarize

some of those algorithms. Consider a lattice filter of order M. For stage m of the

filter, the flow of signals is described by the following pair of equations.
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g~~~(k)~~ M, f~1 kl k~ mi

relcincefcetigcoe ykb m(k) an gm.(k)1 ar the forardprdicio

error and backward prediction error of stage m respectively. Before presenting the
adaotive aigorithms for the lattice., let us quickiy summuarize somne ni-aduarTiC

reflection ,;oefficient estimation methods. Later on we can obtain tiie adaptive

updating equations as approximations to these methods.
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1. Non-adaptive Methods

When the lattice coefficients have fixed, non-adaptive values, several methods

have been proposed for computing these values as functions of the correlation statistics

of the input. Two of these which are based on mean-square error (MSE) minimization

(Ref.23] are given below.

Method I : In this method, we choose kn f to minimize the mean forward

prediction error power, E[f2 m(k)] and kmb to minimize the mean backward prediction

error power, E[g2m(k)]. Here we give the final equations for kmf and kmb without

going into the details. The forward and backward reflection coefficients are given by

k E[fm 1(k)g .l(k- )]kmf= E[g2m'l(k'l)] (4.14)
rfE[g2. Ig l(k- )]

km.b E[f2  (k)k ]

where both ki,f and km,b are obtained from the cross-correlations between the

(m-l)th order forward and backward prediction errors normalized by respective

prediction error powers.

Method 2 : For a single channel lattice using real data and coefficients we can,

however, show that km,f- kmb = km . Based on the condition that km,f= km,b = km ,

we can now minimize either E[f-m(k)], or E[g 2m(k)] in order to obtain an optimum km.

However, it seems more logical to minimize the sum E[fhm(k)] + E[g-m(k) ] as suggested

in [Ref. 28]. The resulting reflection coefficient equation in its final form is given by

.E fT,.- : i k)g,.n. k-I '.
.. t-

where we have normalized the cross-correlation term with respect to the sum of mean

prediction error powers. In both of these methods, the coefficients at stage m can be

computed independently of those following that stage. Thus, optimum values can be
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computed successively along the structure without affecting the other coefficients. This

phenomenon lends to the modular nature of the lattice structure.

2. Adaptive Methods

An instantaneous, gradient-descent adaptive algorithm minimizes a mean-

square error criterion can be derived for a generalized problem. An adaptive lattice

structure is suggested by incorporating time varying coefficients km,(k) and km,b(k) in

the lattice and generating algorithms for the two methods described above. The

resulting procedures are:

Method I : Corresponding to method 1 of non-adaptive procedures metioned

above, we can obtain the following update equations

km, k + 1) - km +1k) + 2 [fm(k) gm_((k-.)]
m- IKk)(4.16)

km,b(k+ 1) =kmb(k) + Alg [fm t(k) amk']

where p is an adaptive step size parameter, X is a positive weighting constant, and the

forward power estimate at the (m-l)th stage, 02 m- ,(k), is

02m-1, (k) - % 62ml,f(k-) + (1-4) [g2m.l(k-1)l

and the backward power estimate at the (m-l) th stage, 62 m.l,b(k), is

02m-lg(k) X- ( 2m-l,g(k-I) + (I-X) [f2ml(k)]

Method 2 : Eq.(4.15) can be approximated to obtain a recursive update equation
as "oilows:

km(k+1) km(k) + p [fm(k)gm.l(k-l) + fm.(k)gm(k)] (4.17)
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For the basic structure of the single-channel lattice, ie, km,f- knb = km , the reflection

coefficients or filter coefficients km(k) may be updated using a modification of the

LMS algorithm of the LMS algorithm [Ref 17,20].

kim(k+ 1) = km(k) + ( [m(k)gl(k-l) + fm_1 (k)gm(k)] (4.18)

where a2mi.(k) is the power estimate at the (m-I)th stage. Now the updated power

estimate is

r2m.l(k) = k c 2 m~l(k-I) + (1-k) [g2 m_1 (k-1) + f2m.l(k)] (4.19)

where k is a positive weighting constant satisfying the criterion 0 < X-< I then controls

the bandwidth of the filter and the resulting power averaging time. A power estimate

is required at each stage in the lattice due to the fact that the forward and reverse error '

sequences have decreased power with increased stage number.

Method 3 : A third successful method of implementing an adaptive algorithm for
FIR lattice structures has been reported by Griffiths [Ref. 17,18]. This algorithm has
been originally discussed for a noise canceller application. The form of the lattice

noise-cancelling adaptive filter is shown in Figure 4.4. The lattice noise-cancelling

adaptive filter consists of an M stage linear prediction lattice for the reference signal

Xr(k) together with a set of tap coefficients Vm(k) which provide the noise-cancelling
subtraction paths. Griffiths' algorithm is briefly presented in the following. The I..

update equations for km(k) are given by

krn(k-t) - km(k) f I)g (k-1; - karn_i~k-2
k rw mm-)I _ 

4

where the power estimate at the (m-l)th stage, a2ml(k) is

d2m.l(k) -Xc2m.l(k-1) + (-X) [g2m-l(k-1) + f2ml(k)] (4.21)
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Figure 4.4 Lattice Form Implementation of Noise-cancelling Filter.

Each coefficient Vn(k) can be determined independently of Vn(k) for n> m, because of
orthogonalization provided by the lattice. Thus the resulting algorithm is

Vm(k+ 1) = Vm(k) + [Em(k) gm(k)} (4.22)Y2m(k)

where associated power measurement y (k) is

Y2m(k) = .y'm(k-)+(I-k) [gm(k-l) gm(k-l)] (4.23)

and :m(k) is the mth stage error signal as shown in Figure 4.4.
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D. SIMULATION RESULTS

fite

Figure 4.5 System Identification Experiment.

For the purpose of computer simulation, let us consider an approximate

algorithm given by

km(k + 1) - km(k) + 2 (k [gm. (k-I)] c(k) (4.24)

where

(r2 m(k) - Xo2'r 1(k-1) + (I-X) g2 m.,(k-l) (4.25)
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The configuration used in the simulation is a system identification experiment as shown
in Figure 4.5. The fixed filter transfer function considered is given by

H(z) - 1 -0.89 z' + 0.25 z 2

The convergence performance of the LMS algorithm (as given by Eq.(4.24)) can be

observed by plotting the error, e(k). versus the update iteration, k. called learning
curves. The input xtk) to both fixed and adaptive iltcrs is a white noise sequence with

zero mean and unit variance. Figures 4.6 to 4.8 show the learning curves for the above
example where we have used three different values for the adaptation constant, i. In

the next chapter, we derive a new algorithm for updating the reflection coefficicnts.

based on the least mean square principle and the steepest descent algorithm.
Improvement in convergence speed will be shown using the new algorithm.
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Figure 4.6 Learning Curve (lit - 0.01). .
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V. ADAPTIVE LINEAR PHASE LATTICE ALGORITHM

A. INTRODUCTION

In Chapter III we dealt with the realization of fixed coefficient FIR lattice filter with
both linear and nonlinear phase characteristics. We reviewed the basics of LMS
algorithm and some adaptive lattice realizations reported in the literature in the

previous chapter. The three adaptive lattice algorithms discussed are direct

approximations of their non-adaptive counterparts. None of them estimates a gradient

as required by the LMS algorithm. In this chapter we present a derivation for a new

LMS based FIR adaptive lattice algorithm and extend it to the linear phase case as

well. The new algorithm is then used in the estimation of spectral lines in white noise.

Results of simulation are included.

B. LMS ALGORITHM FOR THE FIR LATTICE

From Eqs.(3.40) and (3.41) the FIR. lattice equations can be written as

fm(k) = smfmI(k) + km gml(k-l) (5.1)

gm(k) = sm gmI(k-l) + km fm I(k) (5.2)

where m= 1,2,...,M, Sm= I for m# M and km are the lattice reflection coefficients. A

realization of Eqs.(5.1) and (5.2) is shown in Figure 5.1. The lattice input is

x(k) = g0(k) = f0 (k). The output of the filter is

y(k) = fM(k) (5.3)
= sM fM.l(k) + kM gM.l(k.l)

Tlhere"re, :he ,rrcr, :(k), is given by

e(k) = d(k) - y(k)

= d(k) - sM fMl(k) - kM gM._(k-l) (5.4)
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Figure 5.1 Adaptive FIR Lattice Filter.

where d(k) is the desired signal. The objective is to minimize .lie mean square error

J = E ( e2 (k) } (5.5)
.4.

The gradient of J with respect to km and sm , respectively, are given by

Jk-
J ]vk

and

4"
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aJ
= -2 E(e(k) Ml(k)) (5.7)

Then the LMS algorithm can be formulated as follows:

8J
k(k+ 1) = (k)- p,( 'j

Oy(k)=kj(k) + 2 Ptk E~e(k) ( k- j (5.8)

kj.... ~k ( y(k_._)=kk)+ 2 Pk a~)(

and

SM(k 1) = SM(k)- ps(  )

M

= SM(k) + 2 ps Efe(k) fM.l(k)} (5.9)

SM(k) + 2 ps e(k) fMl(k)

where Pk and Ps are the adaptation constant, and we have replaced the true gradient

by its instantaneous estimate. Defining

yk

yields

kj(k+ 1) = kj(k) + 2 P'k e(k) z(k)
SM(k+ 1) = sM(k) + 2 ps e(k) fMl(k)
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where j=- 1,2,...,M. The next step is to estimate the gradient vector z(k). For this

purpose, define

- ______(5. 12)

and

-j~k agi(k)

Then from Eq.(5.3) z(k) is given by

zk) DMI-(k)

=sM(k) 4DM.I j(k) + kM(k) TI'1,i(k-l) + gM_1 (k-1) aMj (.4

where 6 M 1
8 M 8 i.Substituting Eqs.(5.1) and (5.2) to Eqs.(5.12) and (5.13) then

we have

O fi_ I(k) + g l)~I(k-1) 8k.
(D~jk) si(k)- --- + k1 - Ik- + g.(-

8g. (k1 f- (k)0
Tijk s~k,+k(kIA + f. 44.

Oij~(k) = si(k)4Di1 1 (k) + ki(k)'P-l11 (k-1) + gi-1 (k-1)d 1  (5.15)

-i~k si(k)T'P1 ~j(k-1) + ki(k)4Di. 1 1 (k) + fi-1 (k)81 1  (5.16)

where
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i'j

is the Kronecker delta function, and i= 1,2, ... ,M and j 1,2, ... ,M. If i 0, then

Eqs.(5.15) and (5.16) are

Ox(k) 
!

0 0 j(k) 0 xk) - 0 (5,18)3 ..;

,.

'j(k)= D0 j(k) = 0 (5.19)

where j= 1,2, ... ,M. Figure 5.2 shows the computation of gradient elements for the

adaptive FIR lattice algorithm.

From the Eqs.(5.15), (5.16) and (5.19) we have

( i = I'Pi,j(k)= 0 (5.20)

where 1<i<j-l. The computations of gradient elements at each case of j = M,M-1, ...

,1 are as follows:

Casej= M:

( OM(k) - O',M(k)-- 0

i?1k) -- k(: 1  \-l.41k - IK~Ik ',. ,aNi~ 'a.."g-it ''~i.["' ,

'Ii,M(k) = si(k)'Fi.l,M(k-I) + ki(k),i.lM(k) + fi.l(k)6 i,M

where i- 1,2, ... ,M. From Eq.(5.20), every gradient element equals to zero except final

stage elements and gradient elements of the final stage are
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OM,M(k) - gM. 1 (k-1) (5.21)

'IM,M(k) = fM-l(k) (5.22)

Casej=M-1:

4DO,M-l(k) = 'O,M-1(k) = 0

40i,M-l(k) -si(k)O1i,M-l(k) + kj(k)'Pj.,M,41(k-1) + ik16Ml

'Pi,M-l(k) =sff k)'Pj1 ,M1(k-1 ) + ki(k)0ji.l,M-l(k) + _Ik6M_

where i= 1,2, ... .M. Applying the Eq.(5.20), last two stage elements are considerable,

if i= M-1, then we have

(DM_1.M_1(k) = sM-1(k)'DM.2,M-l(k) + kM-l(k)'PT ilk1

'PMl,M_1(k) = sM.1(k)TIM-2,M-1(k-l) + kM..l(k)4VM.2,M.l(k) + fM-2(k) 6 M1,l

Applying the Eqs.(5.17) and (5.20) yields

* DM_1,M_1(k) = gM-2 (k-1) (5.23)

'PM_1,M_1(k) = fiM-2(k) (5.24)

And the last stage terms are

k=k1'~jv_ gMiIkk-,i _Ijk

'IM,M.1(k) =sM(k)TM_,M(k1) + kM(k)ODM_.lM..l(k) + fiM_(k)8M,M_1

Using the Eqs.(5.17), (5.23) and (5.24) yields
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OM,M.I(k) = SM(k)gM.2(k-l) + kM(k) fM. 2(k-) (5.25)

TM,M.I(k) = SM(k)fM. 2(k-I) + kM(k) gM. 2(k-l) (5.26)

Finally,

Casej= I:

0,1(k) = '0,1(k) = 0

O1)i,i(k) = si(k)Di.i,i(k) + ki(k)Till(k-1) + gil(k-)6i, l (5.27)

I'l(k)= si(k)TFi.l(k-l) + ki(k)0 1 il(k) + fi_1(k)il (5.28)

where i- 1,2, ... ,M.

The LMS algorithm derived in the foregoing can be summarized in Table 1.

Simulation Results:

The performance of the algorithm summarized in Table 1 has been observed by

computer simulation. The configuration used is the system identification experiment as

discussed in Section (IV. D) using the same fixed coefficient filter. The learning curves

obtained using the new algorithm are shown in Figures 5.3 to 5.5. Comparing these

with the learning curves in Figures 4.6 to 4.8, which are obtained using approximate

algorithms, we observe significantly faster convergence rate for the new algorithm.
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TABLE I

LMS ALGORITHM FOR THE FIR LATTICE

Initialization:

K(o) = 0
SM(0) = 1

Lattice:
x(k) = f (k) = go(k)

fm(k) = sm(k)fm.(k) + km(k)gm.l(k-1)

gn(k) ='sm(k)gm_l(k-1) + km(k)fml(k)

m = 1, 2, ..., M

y(k) = fM(k)

Update Equations:
kj(k+l) = kj(k) + 2 [gk/r2k(k)] e(k) zj(k)

2
sM(k+l) = SM(k) + 2 (ps/a2s(k)] e(k) fM-l(k)

where Ak and ps are the adaptation constants,

02k (k) = k &2k(k-1) + (1-X) D2M, j(k)

and

02s(k) = a r2(k-1) + (1-,) f'M~l(k)

are estimations of power in z (k) and fM 1(k ),

respectively and X is a positive weighting constant,

Gradient Vector Elements:
0,j(k) =' 0 j(k) = 0

40i,j(k) = si(k)0i_l,j(k) + ki(k)Ti_,j(k-1)

P *(:k) = si(k)'P i.l,j(k-.)+ki))ilj )tip

+ f i..l(k)8 i , j

zj(k) = 4M,j(k)
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C. LINEAR PHASE FIR LATTICE ALGORITHM
We now extend the LIMS algorithm derived in tihe previous section to the linear

phase FI R lattice filter. 'l

From Eq.(3.29), output of the linear phase FIR lattice can be written as ,i

y(k) "- fMv(k) + g'M(k.D) (5.29) '

".4

The lattice input is x(k) = f0(k)=go(k ) . Substituting Eqs.(5. 1) and (5.2) in the output

equation of the filter yields -

a%

)' ) -- M IM~lk) - M g Ilk-l) + ' M gM-l(k-D-l) - 1-kM 1 ~lk-Dl5)
SM [fMI +  kM [fM-I(k'D ) + gI (.30

and the error, e(k), is given by
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Figure 5.6 Adaptive Linear Phase FIR Lattice Fi'lter.

e(k) -d(k) -y(k)5.1

=d(k). - M tf.I(k) + 9M-l(k-D-I)] ~ [M~lkD +

where d(k) is the desired signal. A schematic of the linear phase FIR lattice realization

is shown in Figure 5.6. From Eq.(5.3 1) we see that y(k) is a function of both sMaad

kmI. But f\,1. 1(k) and gMI.(k-l) are functions of k%_,and so on. Therefore, in order

to minimize the mean square error, we deline a cost function

and a gradient element 4
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Oy(k)

z(k)- (k)j (5.33)

Then following the treatment in Eqs.(5.6)-(5.1I) the LMS algorithm for the linear

phase lattice can be written as

kj(k+ 1) kj(k) + 2 Pk e(k) z(k)
sM(k-t- I) = sM(k) + 2 gs e(k) ffMl(k) + gM1 (k-D-1)I (5.34)

where j= 1,2,...,M. From Eqs.(5.29) and (5.30), the gradient vector z(k) is given by

z(k) 4D~M,j(k) + 'FM 1(k-D)

= sM(k) [l)M4_,j(k) + IM.I,j(k-D-1)] + kM(k) [0IM.Ij(k-D) (

+ 'M-t.i(k ".1)l + [fM - ( k -D) -I gM-(k-l) aM.j ".
Mj5

where 6 M,j=(akMidkj), and Om j and T m,j are obtained on the same lines as in

Eqs.(5.15)-(5.17). The resulting LMS algorithm is summarized in Table 2.

Simulation Results:

The performance of the algorithm summarized in Table 2 has been observed by

computer simulation. The configuration used is the system identification experiment as

discussed in Section (IV. D). We have used two different fixed coefficient linear phase "
FIR filter examples, one with N even and the other with N odd. They are

H3(z) - 0.154 + 0.462z' + 0.462z- 2 + 0.154z 3

and

H4(z) = 0.15 - 0.45z' l + 0.36z 2 - 0.45z- 3 + 0.15z 4

The 'earning ,curves obtained using :he new aPgorthm ire shown in Figures .- zo .3. ).

Figurcs 5.- and ;.3 are obtained '.earning ur-:.es with lincar phase FIR :rans,'fr
function H3(z). Figures 5.9 and 5.10 are obtained learning curves with linear phase
FIR transfer function H4 (z).
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TABLE 2

LINEAR PHASE FIR LATTICE ALGORITHM

lnitial izat.-Aon:
9( 0) =0

am 1)
Lattice:

x(k) =fo(k) -2 go(k)

fm(k) =Sm(k)fmi,(k) + km(k)gm_1 (k-1)

gm(k) =sm(k)gm..,(k-l) + km(k)fm...(k)

m =1, 2, ... I M

y(k) = sM tfM~l(k) + gM...(k-D-1)] + kM [fM-l(k-D)

+ gM.. 1 (k-1)]
Update Equations:2

kj( + ) k (k)+ 2 [g/(y k k) e(k) z (k)

SM(k+l) = sM(k) + 2 (j15/u2 (k)] e(k) (fM.1k

+ gM...(k-D-1)]

where Pkand psare the adaptation constants,

4,k(k) u2 k k1 + (I-), 4D X ) +PMJ( kD)]2

and

47s =k). a 2s(k-1) + (I-X) (fM_..(k) + MlkDI]

are estimations of power in z.j(k) and
[fM_.1 (k)+gM-l(k-D-1)] ,respectively and X is
a positive weighting constant, 0<):51.

Gradient Vector Elements:
0Doj(k) = '0  (k) =0

04D .(k) Vl)4  () k4 k'. kI
- -t1 45

'ij(k) =si(k)'ii,,(k-l) + ki(k)Oi_. 1 1 (k)

zj(k) = DM,jk) + 'VM,jk-D)
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D. SPECTRAL ESTIMATION
In this section, we extend the linear phase FIR adaptive lattice algorithm derived

in the previous section to the estimation of spectral lines in white noise. The spectral
estimation problem is some what different from the system identification experiment
that we have been considering so far. in a ".,pical spectral estimation problem. we are
given d time series and we need to estimate its spectrum. A suitable configuration that
is frequently used for this purpose is shown in Figure 5.11. Comparing this with
Figure 4.5, we notice that we have the given time series at the input of the adaptive
filter and the filter updates its coefficients to minimize the mean square output. In
doing this, we assume that the input process x(k) has been generated by passing a
white noise sequence through a filter, say I(z), and the adaptive filter attempts to

realize an inverse filter, say H(z)= 1/1(z). Considering that the adaptive filter has
sufficient degrees of freedom, the output of the filter will be a white noise sequence.

The adaptive algorithm summarized in Table 2 can be used in spectral estimation
after appropriate modification. In the present case we minimize the cost function,

J = E{y 2(k)}

rather than J = E{e 2 (k)}. The resulting update equations can be shown to be

kj(k+ 1) = k (k) - 2 [1k!02/kj(k)] e(k) z(k) (5.36)

SM(k+ 1) = sM(k) - 2 [ps/a2s(k)] e(k) [fM~l(k) + gM-l(k-D-1)] (5.37)

where zj(k), Gk.(k) and as(k) are as defined in Table 2.
Using the adaptive algorithm in Eqs.(5.36) and (5.37) we can obtain values of the

reflection coefficients and the sM  coefficient. We then obtain the equivalent

.oolvnoniai. B(z), by 2oing through 'he standard step up procedure liven by Ref. ,-.

bn,m  km
bm,i=sm bm.i,i + km bml,mi "-
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I
where i- 1,2,...,m-I and m- l,2,...,M. Finally the required linear phase transfer

function is obtained as follows:

HN.l(z) = FM(z) + z.D GM(Z)

II
where FM(Z)= B(z) and GM(Z)= 'M B(z'l). The spectrum is computed as follows:

S(f

ho + hl eJ1iO + ... + hN 1 e-j(n-l)o 12

where (o=2itf, and f is the normalized frequency (with respect to the sampling

frequency) in the range, 0 < f< 0.5.
'p

Simulation Results:

The input process x(k) consists of a signal in noise, given by

x(k) - s(k) + w(k)

where s(k) may be a single, or multiple sinusoids and w(k) is a zero mean unit variance

white noise sequence. In the following we consider several examples using parameters

ranging from a single sinusoid to 4 sinusoids, SNRs from 30dB to 10dB, and filter

order, M, from 2 to 30.

Example 1: We consider a single sinusoid given by

x(k) = cos(2nfk) + w(k) (5.38)

where f= 0. 15, SNR= 30dB.

Figures 5.12. 5.13. 5.14. and 5.15 are plots fi frequency spectrum with JiiiIrent

order of lattice M and adaptation constant Ip.

Figure 5.12 is the plot of the case M=2 and ;t=0.0l5. We see that the peak is

at f= 0. 15 and no spurious responses.

Figure 5.13 shows the frequency spectrum of M = 4 and p=0.01. We observe

that one peak is at f=0.15 and a spurious response whose magnitude is about -53dB at

f=0.37.
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Figure 5.11 Spectral Estimation Mode.

Figure 5.14 shows the frequency spectrum of M = 10 and it = 0.03. There are one
peak at f=0.15 and four spurious responses at f=0.05, 0.25, 0.35 and 0.45. The largest

spurious response is about -15 dB at f=0.45.
Figure 5.15 shows the frequency spectrum of M =20 and it= 0.03. There are one

peak at f=0.15 and nine spurious responses. The largest spurious response is abcut

-27 dB at f= 0.125.

Through the Figures 5.12, 5.13, 5.14, and 5.15 we can determine that the bcst

model order to detect the one sinusoidal signal is M = 2.

Next. we Fix the order of lattice M. adaptation constant .t and iteration nunIrcr
k. Figures 5.16, 5.17 and 5.18 are the plots of frequency spectrum with changing the

signal to noise ratio (SNR).

Figure 5.16 is the plot of M= 20, It=0.05, k =3000 and SNR=3OdB. There is a

peak at f= 0. 15 and the largest spurious response is about -27dB at f-0.125.
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Figure 5.17 is the plot of M= 20, p=0.05, k=-,000 and SNR=20dB. The largest

spurious response at f= 0.425 is larger than the desired response. At this case, we

cannot estimate the frequency of sinusoid.

Figure 5.18 is the plot of M = 20, t= 0.05, k = 3000 and SNR= 10dB. Three of

the spurious responses are larger zh.n the desired response. The desired response :s

about -13dB.

From Figures 5.16, 5.17 and 5.18, if the SNR is getting smaller then estimating

sinusoidal frequency is more difficult.

Example 2: Next, to estimate two sinusoidal frequencies in noise, set the input x(k) as

x(k) = 1 { cos(27rflk) + cos(2nf 2 k) } - w(k) (5.39) 4

where the normalized frequencies of signals fl 0.15 and f2 = 0.25 and set SNR= 30dB.

Figure 5.19 shows the frequency spectrum of M = 4 and .u= 0.02. There are two

peaks at f =0.15 and f2 = 0.25 and no spurious responses.

Figure 5.20 shows the frequency spectrum of M = 20 and t =0.022. There are

two peaks at fl = 0.15 and f2 = 0.25, and eight spurious responses. The largest spurious

response is about -20dB at f= 0.375.

From Figures 5.19 and 5.20, the best model order to estimate the frequencies of

two sinusoidal signals is M = 4. :

Example 3: Next, to estimate four sinusoidal frequencies in noise, set the input x(k) as

x(k) /2 {cos(21rflk) + cos(21rf 2k) + cos(2irf 3 k) + cos(2irf4 k) + w(k) (5.40)

where -he normalized reuences ,t -s .na~s :7, . . := . . ... .... ,n

set 3'\N = 0dB.

Figure 5.21 shows the frequency spectrum of M = 8 and i=0.015. There are four

peaks at fl =0.07, f2 =0.15, f3 =0.27 and f4 =0.375, and no spurious responses.

Figure 5.22 shows the frequency spectrum of M= 30 and ti=0.01l4. There are

four peaks at fl =0.05, f2 = 0.15, f3 =0.25 and f4 = 0.35, and eleven spurious responses.

The largest spurious response is about -23dB at f= 0.45.
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From Figures 5.21 and 5.22, the best model order to estimate the frequencies of

four sinusoidal signals is M =8.
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Figure 5.12 Frequency Spectrum (I sinusoid, N = 2, ttO .015).
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Figure 5.17 Frequency Spectrum (I sinusoid, MLI20, SNR= 20dB).
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Figure 5.19 Frequency Spectrum (2 sinusoids, M = 4, p = 0.02).
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Figure 5.20 Frequency Spectrum (2 sinusoids, M = 20, p = 0.022).
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E. SUMMARY, CONCLUSION AND SUGGESTED FUTURE WORK
The thesis investigates the application of lattice structures in Prony's method of p

spectral line estimation. The complete solution to Prony's method consists of three

steps: (i) representing a given process of M sinusoids in noise in terms of complex
exponentials, (ii) finding roots of a symmetric polynomial, and (iii) estimating the

frequency, phase and amplitude information. In this thesis, however, we have

emphasized only the frequency estimation problem.

The underlying theory of Prony's method has been briefly reviewed in Chapter II.

By using a modified Prony's approach, we observed that the frequency estimation (as
part of Prony's method) requires a polynomial with a linear phase property. The

basics of the linear phase FIR filter and the lattice structure have been included in
Chapter 11. Also we have shown that a linear phase FIR transfer function can be

realized from an FIR lattice using D number of additional unit delays and an adder,

where D is determined by the order of the linear phase polynomial.

The principles of adaptive filtering and the LMS algorithm have been briefly

studied in Chapter IV. We have derived a new LMS algorithm for the FIR non-linear
phase ans linear phase transfer functions in Chapter V. The problem spectral

estimation using the new adaptive algorithm has been addressed, and the simulation

results are included. "

The significant outcome of the work is the derivation of an LMS type algorithm

for a linear phase lattice structure and its application to spectral line estimation as part
of Prony's method. As has been shown, the new algoritha, yielded faster convergence

rate compared to previously reported approximate algorithms. The application of this

algorithm to spectral estimation produced high spectral resolution as illustrated by the

simulation results.

However, we have observed spurious spectral responses, when the model order is

higher that the required. Also we have observed that the SNR performance of the
algorithm needs to be improved. For input SNRs less than about 10 dB. the algorithm

2 : r'n'..,, ; .. .., ,'r .'. C "' -. , ~ . ~. ~t: i ;: :,..v : u c . "

taken up.
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APPENDIX A
EXAMPLES OF OBTAINING A LATTICE STRUCTURE FOR THE FIR

TRANSFER FUNCTION

Example A. I

Obtaining a lattice structure for the general FIR transfer function. The unit

sample response of a FIR transfer function is given by

H3(z) - 0.5 + 0.25z- 1 + 0.125z-2 + 0.0625z 3

Solution: Given unit sample response is

H3(z) - 0.5 + 0.25z " + 0.125z "2 + 0.0625z "3  (A.I)

Using Eq.(3.22), we have polynomial for 3 sections

H3(z) = b3 ,0 + b3 ,1 z' b3,2 z' b (A. 2)

Comparing Eqs.(A.1) and (A.2), we have

b3 ,0 - 0.5

b3 ,1 - 0.25

(A.3)
b3 ,2 = 0.125

b3 ,3 - 0.0625

Startin2 with m- 3 we have from Eq.(3.46)

&3  03,3 3 .0.b25
(A.4)

s3 - b3,0  0.5

Now, we need to generate the coefficients for H 2(z) and from Eq.(3.46)
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bmn.i,i = Smbm.i - kmbm.m.i (A.5)
Sm -kmz

And for m- 3 and i - 0 we have

b2 ,0 = 1 3
sl- k32

(0.5)(0.5) - (0.0625)(0.0625) (A.6)
= (0.5)2 (0.0625)2 -

Next, for m = 3 and i = 1 we get

b2,1 s3 b3 1 - k3b3 .2
s32 - k3

2

(0.5)(0.25) - (0.0625)(0.125) (A.7)
b2 ,1 = (0.5)2 - (0.0625)2 = 0.47619

and finally

b2 ,2 = 3b3.2 - kb3,1
s32 -'k32

b2,2 (0.5)(0.125) - (0.0625)(0.-5) 0.19048
(0.5)1 - (0.0625)2 (A.8)

from Eq.(3.46), we have

.K - .19048

A.9)
s2  = 1

The new polynomial is

H2(z) =b2,0 + b2,1zl + b 2,2z'2
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H2(z) - I + 0.47619z 1 + 0.19048z- 2  (A.10)

for m= 2 and i= 0, we have
bl'j = b 2'O " 22"2

I -k

bl,1 = i (0.19048)0.19048) = 1 (A.11)
1 (0. 19048)'

and finally -,

b, = b2 .1 - k2 b2 .
b11  I 1k 2

2

',

0.47619 - (0.19048)(0.47619) 0 (
bl1 l = I - (0.19048)2 - 0.40000 (A.12)

,,

From Eq.(3.46), we have

k= b, 1  0.40000

(A. 13)

s= l,0 = I

Therefore, reflection coefficients and s coefficients of the FIR lattice structure are

k = 0.40000

k2 = 0.19048

k3 = 0.0625

St = 1

s3  0.5
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Example A.2 (N- 4:even)

Obtaining a lattice structure for the linear phase FIR transfer function. A linear
phase FIR transfer function is

H 3(z) - 0.154 4- 0.462z -1 - 0.462z - 2 + 0.154z- 3  (A.I14)

Solution: Eq.(A. 14) can be written in the form of Eq.(3.35)

HP) = a0 + alz'l + z"2 (a, + a0zl) (A.15)

Comparing Eqs.(A. 14) and (A. 15), we get the following relationships.

a0 = 0.154

(A.16)
a, = 0.462

To determine the lattice reflection coefficients of the corresponding linear phase FIR
lattice structure and the number of unit delay, we use Eq.(3.29) which is

HN.I(Z) = FM(z) + z"D GM(Z) (A.17)

From Eq.(A.14), we have N=4(even), the order of the polynomials FM(z) and GM(z),
M = (N/2)-I = (4/2)-1 = 1, and the number of unit delays, D = N/2 = 2. Now,
from Eq.(3.37), we may have the forward prediction error transfer function as follows:

F l (z) a0 + a1 z
- 1

(A.18)
- 0.154 + 0,462 z- 1  %

For M = 1. Eq.(A. 18) can be rewritten as

F l (z) bl,0 + bl, z-1  (A.19)
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From Eqs.(A. 18) and (A. 19), we get the desired reflection coefficient and s coefficient

of the linear phase FIR lattice structure as follows:

kI = bl,- 0.462

sI = b , 0.154

Example A.3 (N= 5:odd)

Obtaining a lattice structure for the linear phase FIR transfer function. A linear

phase FIR transfer function is

H4(z) = 0.15 - 0.45z' + 0.36z 2 - 0.45z.3 + 0.i5z "4  (A.20)

Solution: Eq.(A.20) can be written in the form of Eq.(3.30)

H4 (z) = a0 + alz'l + (1/2)a 2z"2 + z"2 {(1/2)a 2 + alz'1 + a0z' 2 } (A.21)

Comparing Eqs.(A.20) and (A.21), we get the following relationships.

a0 = 0.15

a1 = -0.45 (A.22)

a2 = 0.36

To determine the lattice reflection coefficients of the corresponding linear phase FIR

lattice structure and the number of unit delay, we use Eq.(3.29) which is

HN.I(z) = FM(z) + z"D GM(Z) (A.23)

From Eq.(A.20), we have N- 5(odd), the order of the polynomials FM(z) and GM(z),

M-= (N-l)!2 = (;-I)/" = 2. and the number of unit delays, D = (N-1)12 = 2. Now,

rom : 3.3. we :nay "lave the tbnvard prediction error :ransicr tunct:on -is ,cws:

F2 (z) = a0 + a z-1 + (1/2) a2 z-2

(A.24)

= 0.15 - 0.45 z" + 0.18 z-2

for M = 2, Eq.(A.24) can be rewritten as
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F2 (z) - b20+ b2 ,I z" + b2 ,2 Z'2  (A.25)

From Eqs.(A.24) and (A.25), we have

k2  - 2, = 0. 18

s2 = =2, 0. 15

Now, we need to generate the coefficients for Fl(z) and from Eq.(3.46)

b10- s b2 0 - ~b - (0.15)(0.15) - (0.18)(0.18) 1 (A.26)
s2 - k2 L 0.15" - 0.182-

= s2b2 .1 - k2b2 .1  j0.15)(-0.45) - (0.18)(-0.45) (.7
b, 22 -,2 - 0. 152-0-S1.36364 (.7

From Eqs.(A.26) and (A.27), we have

k b1 1 = -1.36364

Si b1,0  =1

Therefore, reflection coefficients and s coefficients of the linear phase FIR lattice

structure are

ki= -1.36364

k = 0.18

sl= I

s2= 0. 15



APPENDIX B

COMPUTER PROGRAMS

******Program
* This program is designed for the system identification experiment *
* which is shown in Section (IV.D). The learning curves can be obtained*
* by plotting the error, E, versus the update iteration, k. *

* Variable Definition

* ISEED : seed for the random number generation (white noise)
* AMU : adaptation constant
* k : time index
* M : order of the FIR transfer function or total number of
* lattice sections
* NB : number of iterations
* A() : coefficients of the FIR transfer function

B(i) : reflection coefficients of the lattice
* F(I) : forward prediction error
* G(I) : backward prediction error
* GD(I) : delayed backward prediction error
* SGL(I): estimations of power
* W(K) input of both FIR and lattice
* YF(K) output of the FIR filter
* YL(K) output of the lattice filter
* ER(K) squared error

* Variable Declaration

INTEGER ISEEDK,I,J,N,M,NB
REAL A(100),B(10O),F(100),G(1O0),GD(I0O),YF(1OOOO),YL(10000)
REAL X(100),SGL(100),ER(10000),W(10000),Y(10000),AMU,E

3e- Adaztation '.nstant U and Number of :terations NB

I FORAT(X,'1AU',5X,'NB')
READ(5,*) AMU,NB

* Initialization

DO 10 K=1,100

A(K)=C
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B(K)=0

X (K) =0

F(K)=0

G (K) =0

GD(K)=0
SGL(k)=!.O

10 continue
DO 15 K=1,10000

YF(K)=0

YL(K)=0

ER(K)=0
W(K)=O

Y(k)=0

15 CONTINUE
E=0.
R=1
ISEED=343169
M=2
A(1) = 1.0

,A(2) = -0.89

A(3) = +0.25

* Random Number Generation
* (mean zero, unit variance, white sequence)

DO 20 N=1,NB
CALL LNORM(ISEED,RN,1,1,0)
W(N) = RN

20 CONTINUE

* FIR Filter Calculation

DO 30 K = 1,NB
X(1)=W(K)
YF(K)= A(1)*X(1)
DO 40 I=1,M

YF(K)=YF(K)+A(I+1)*X(I+1)

40 CONT:NUE
DO 43 :=-:,I '

45 CONTINUE

30 CONTINUE

* Lattice Filter Calculation

DO 50 K =1,NB
F(1)=W(K)
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DO 60 1 It

60 CONTINUE

7LI * ~ 1%.

* Calculating the Error

I *YF(J() - YL'(K)1

Updating the Reflection Coefficients

CALL LMS (3,GD.E,AnU,SGL,M)

ER(K)=E**2
DO 70 ul~m

GD ( j)MG( j)
70 CONTINUE

IF (K.EQ.R) THEN
WR::(.,3:0 K, 3('. 312 ERIK,
RZR+50

END IF

Y(k)-E

50 CONTINUE

300 FORflAT(3X,16,SX,3(F1O.7,4X))

* Plotting the Learning Curve

CALL PLOT(Y,N)
STOP

END

SUBROUTINE LMS(B,GD,E,AMU,SGL,M)

REAL B(100),GD(100),SGL(100),E,AIU

200 CONTINUE
DO 210 1=1,11

B(I)=B(I)+(AMU/SGL(I) )*E*GD(I)

210 CONTINUE

RETURN

END
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SUBROUTINE PLOT(Y.N)

DIMENSION Y(N) X( 10000)

10 P-/1

c CALL TEK618
c CALL PRTPLT(72,6)

CALL SKERPA( PARKPARK(.'A.,3)

17ALL P'{?scP11 I

CALL RESET' ALL')

CALL PAGE'8.5,11.0)

CALL HWROTI AUTO')

CALL XINTAX

AkLL A.EA2D (5.O .8)

CALL rI~rC1

CALL SHDCXM(9O.0 1,0.002,1)
CALL HEADIN('LEAP.NING CURVES',100,2.0,1)

.%L: *'A2' :7!aA7::"NS

CALL YNAME('ERRGRS$ 10G)
CALL KESSAV'ADAPTIVE LAT7"6:CE(ANUJ%.5,FIG4.8)S',100,3.0,-0.8)

CALL FRAME

CALL GRAF(0,I5TP,N,-3,0.1.5,3.0)

C CALL THKCRV(0.02)

CALL CURVE(X,Y,N,0) -

CALL ENDPL(0)

CALL DONEPL

RETURN N

END

844

P.O p .. r ®



******Program2*****************************
*This program is designed for the system identification experiment
*using the LMS algorithm which was derived in Section (V.B).

INTEGER ISEED,K,I,J,NM,NB
REAL A(100),B(100),F(100),G(100),GD(100),x(100),YF(5000),YL(5000)
REAL ER(5000),W(5000),SGL(100),PH(100,100),Ps(100,100)
REAL PSD(100,1OO),GR(1O0),Y(50O0),AKU,E

*Set Adaptation Constant ~iand Number of Iterations NB

WRITE(5,1)
1 FORMAT(5X,-AMU-,5X,'NB')

READ(5,*) AMU,NB

* Initialization

E=0.

R= 1
DO 5 K= 1,5000

W (K) =0

YF(K)=O

YL(K)0O

ER (K) =0

Y(K)=0
5 CONTINUE

DO 10 K=1,100
A(K)0O

B(K)=0
X(K)=O
F(K)0O
G (K) =0
GD(K)0O
SGL(K)=1.0

GR(K)0O
10 CONTINUE

00 15 K=1,ioo
DO 15 L=1,100

PH(K,L)0O
PS (K ,L) =0
PSD(K,L)=0

1s CONTINUE
ISEED343169
M=2
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A(1) 1.0
A(2) =-0.89

k(3) =+0.25

* Random Number Generation
* (mean zero, unit variance, white sequence)

Do 20 N=1,NB
CALL LNORM(ISEED,RN,1,1,0)
W(N) = RN

20 CONTINUE

*FIR Filter

Do 30K =1,NB
X(1)=W(K)
YF(K)= A(1)*X(l)
DO 40 I=1,,M

YF(K)=YF(K)+A(I+1)*X(I+l)
40 CONTINUE

DO 45 1=1,11
X(M+2-I)=X(M+1-I)

45 CONTINUE
30 CONTINUE

* Lattice Filter

Do 50 K =1,NB
F (1) =W (K)
G(1)=W(K)
DO 60 1 = 1,M

G(I+l)=GD(I)+B(I)*GD(I)

60 CONTINUE
YL(K)=F(M+l)

* E = YF(K) - YL(K)

Updating the Reflection Coefficients

CALL 1MLMS (?H,?S,PSD,GR,,T,G,GD,B,SG',,AU,I)
ER(K)=E**2
DO 70 J=1,M

GD(J)=G(J)
70 CONTINUE ~

IF (K.EQ.R) THEN -

WRITE(6,300) K, B(1),B(2),B(3),B(4),B(5),B(6),B(7),B(8),E
R=R+30 '
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END I F
Y (K) WE

c WRITE(6,100) K,W(K),YF(K),YL(K),E,ER(K)
50 CONTINUE
300 FORMAT(1X,I6,2X,9(F1O.7,2X))
100 FORMAT(3X,I3.2X,5(F1.0.7,2X))

* Plotting the Learning Curve

CkLL PLOT(Y,N)
STOP

END

SUBROUTINE MLMS(PH,PS,PSD,GR,F,8 ,BD,R,SGL,EK,AMU,N)
DIMIENSION PH(100,100),PS(100,100),PSD(1OO,1OO),F(100),B(100)

GR(N)-BD (N)

DO 200 1.2 ,N

PS(1,1)=F(N+1-I)
IT=I-1

DO 10 w1,IT

PH(I ,K*1)=PH(I ,K)+R(N+1-I+K)*PSD(I ,K)
10 PS(I,K~l).PSD(I,K)+R(N.1-I+K)*PH(I,K)

DO 20 Km1,IT
20 PSD(I,K)=PS(I,K)
200 CONTINUE

DO 210 K-2,N
210 GR(N*1-K)=PH(K,K)

DO 211 K-1,N
211 SGL(K)i.90*SGL(K),.1O*GR(K)*GR(K)+1.0

DO 220 I1,,N
R(I)-R(I)*(AMU/SGL(I) )*EK*GR(I)

IF(R(I).GE.1.0) R(I)=O.
IF(R(I).LE.-1.0) R(I)=0.

220 =r. INUE
RE-. 1JR14

SUBROUTINE PLOT(Y,N)
DIMENSION Y(N),X(5000)

ISTP=N/10

DO 10 J=1,N
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10 X(J)wJ
c CALL TEK618

c CALL ?RTPLT(72,6)

CALL SHERPA('PARKPkRK2,A'.3)

CALL PHYSOR(1.,1..)

CALL RESET('ALL')

CALL ?A~S5,!O

CALL HWROT('AUTO')

CALL XINTAX
CALL AREA2D(S.0.2.8)

CALL HIIGKT(0.10)

CALL COKPLX

CALL SKDCHR('90.0. 1,0.002,I)

CALL HEADIN( LEARNING CtJRVES ,100.2 .0.1)

CALL XGAZE(ITERATIONSS',100)

CALL YNANE('ERRORS' lOC)

CALL I'ESSAG(ADAPTIVI LATTICE(ANU.5,FIG5.S)S,100,3.0,-0.8)

CALL FRAME

CALL GRAF'(0.ISTP,N,-Z.5,I.25,2.5)
c CALL THKCRV(0.02'

CALL C'.RVI'E. N ? ")

CALL ENDL 0)

CALL DON!EPL

RE.-URN
END
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******Program ******************************
" This program is designed for the system identification experiment.
" rhe LKS algorithm shown in Section (V.C) was extended to the linear *

" phase FIR lattice filter.*

INTEGER ISEED,K,I,J,N,M,NB,R,MA,KL
REAL A(100),B(100),F(100),G(100),GD(100),YF(3000),YL(3000)
REAL X(100) H(100'),YD(3000),ER(3000),W(3000),YFF(3000),YLL(3000)
REAL SGL(100),PH(100,100),PS(100,100),PSD(100,100)
REAL GR(100),GRD(100,IOO0),GRB(100),Y(3000),AHU,E,C

Set Adaptation Constant phand Number of Iterations NB

WRITE(5,1)
1 FOR'AT (5X,IAMU' , X, 'NB')

READ(S,*) AIIU,NB

:nitialization

Eno.
RIl
1M4
ISEED-343 169

DO 10 K=1,100
A (K) -O
B (K)=0

X(K)-0
F(K)0O

G(K)=0

GD (K) =0

H (K) =0
SGL(K)=1.0

GR(K)=0

GRB(K)= P

10 ON'T:NE

YF(K)=0
YL (K) =0
YFF (K) =0

YLL(K)0O

YD (K) =0
ER(K)=0

Y (K) =0
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11 CONTINUE
DO 15 K=1,100
DO 15 L=1,100
PH (KL) =0
PS (K ,L )=0
PSD(KL)=0
GRD(K,L)=O

15 CONTINUE
c C-.154
c A(1)=.154/C
c A(2)=.462/C

A(1)=. 15/C
A(2)=- .45/C

A(3).36/C

* Random Number Generation
* (mean zero, unit variance, white sequence)

DO 20 N-1,NB
CALL LNORM(ISEED,RN,1,1,0)
W(N) azR

20 CONTINUE
IF (MOD(M,2).EQ.0) MA=M/2
IF (MOD(M,2).NE.0) HA=(M+1)/2
IF (MOD(M,2).EQ.0) HL-MA
IF (MOD(M,2).NE.0) ML-MA-1

* Separation of Coefficients

IF (MQD(M,2).EQ.O) THEN
DO 21 IziHMA

H(I)=A(I)
H(MA+2+I )=A(MA+1-I)

21 CONTINUE
H(MA+1 )=A(t4A+1 )/2
H(MA+2)A(MA+1)/2

END i.-

00 22 :=11:"IA
H (I)=A (I)
H (MA+ I)=A (MA+ 1-I)

22 CONTINUE
END IF

* LINEAR PHASE FIR FILTER

90



DO 30 K z1,NB
X (1) -W (K)
YF (K)-H (1) *X(1)
IF (MOD(M,2).EQ.0) THEN

DO 40 11I,KA
YF(K)=YF(K)+H(I+1 )*X(I.1)

40 CONTINUE
YFF(K)=YF(K)

DO 41 I=1,MA+l
YFF(K)=YFF(K)+F(HA+1+I )*X(MA+I)

41 CONTINUE
END IF
IF (MOD(M,2).NE.0) THEN

DO 42 1-1,MA-1
YF(K)=YF(K)4&H(I+1)*X(1+1)

42 CONTINUE
YFF(K)=YF(K)

DO 43 I=1,I{A
YFF(K)=YFF(K)+H(MA.I)*X(MA+I)

43 CONTINUE
END IF

DO 45 Iu1,M
X(M+2-I )=X(M+l-I)

45 CONTINUE
30 CONTINUE

* LATTICE FILTER

DO 50 K =1,NB
F (1)=W (K)
G (1) =W(K)

DO 60 I - l,11L
F(I+1)=F(I)+B(I)*GD(I)
G(1+1)=D(I)4B(I)*F(l)

60 CONTINUE
YL(K)=F(nt+l)
YD(K)=GOL+l)

* Updating the Reflection Coefficients

CALL HLMS (P,Q,QD,GRB,GRD,F,G,GD,B,SGL,E,ATJ,ML,MA)
ER(K)=E**2

DO 70 J=1,ML
GD(J)=G(J)

70 CONTINUE
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YI(it)=E

WRITE(6,300) K,Y(K)

s0 CONTINUE

* Plotting the Learning Curve

CALL PLOT(Y,N)

300 FORMAT(3X,I6,3X,F1O.5)

STOP

END

SUBROUTINE MLMS(PH,PS,PSD,GRB,GRD,F,B,BD,R,SGL,EK,AMUN,MA)

DIMENSION PH(100,100),PS(100,100),PSD(100,100),GRD(100,100)

GR(N)=BD(N)
GRE (N)=F (N)
DO 200 I=2,N

PH(I ,1)=BD(N+1-I)
?S(:,1'/=F(N+1-I)

IT I -1
DO 110 X=1,IT

PH(I,K+1)=PH(I ,K)+R(N+1-I+K)*PSD(I ,K)

110 PS(I,K+l)=PSD(I,K)+R(N+1-I+K)*PH(I,K)
DO 120 K-i , IT

120 PSD(I,K)=PS(I,K)
200 CONTINUE

DO 210 K=2,N
GR(N+1-K)=PH(K,K)

210 GRB(N+1-K)=PS(K,K)
DO 220 K=1,N

DO 220 L=1,MA

220 GRD(K,MA+2-L)=GRD(K,MA+1-L)
DO 230 K=1,N

230 GRD(K,1)=GRB(K)
DO 240 K=1,N

240 GRB(K)GRDK,!A.)
:)o Z50 KID

'50 D R(K) =Ga(>RBK
DO 260 K=1,N

260 SGL(K)=.90*SGL(K)+.10*GR(K)*GR(K)+1.0
DO 270 I=1,N

R(I)=R(I)+(AMU/SGL(I))*EK*GR(I)
c IF(R(I)..GE.1.0) R(I)=0.

c IF(R(I).LE.-l.0) R(I)=0,
270 CONTINUE
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RETURN

END

SUBROUTINE PLOT(Y N)

DIMENSION Y(N) ,X(3000)
ISrP=N/10

DO 10 J-1,N
10 X(J)=J

c CALL TEK618
c CALL PRTPLT(72,6)

CALL SHERPA('PAJ(PARK' ,'A' ,3)
CALL PHYSOR(l.,l.)
CALL RESET('ALL')

CALL PAGE(8.5,11.)

CALL HWROT('AUTO')
CALL XINTAX

CALL AREA2D(5.0,2.8)

CALL HEIGHT(0.10)

CALL COMPLX
CALL SHDC.'R(90.0,1 .0.002,1)
CALL KEADIN( LEARNING CURVES',100,2.0, 1)
CALL C'AME('ITERATI0NSS' .100)
CALL YNAME('ERR0RS',100)
CALL MESSAG('ADAPTIVE G-M LATTICE(F5.10,AMUz.0.1)S',100,3.0,-0.8)

*CALL FRAME

CALL GRAF(0,ISTP,N,-8.0 .4.0 .8.0)
c CALL niKCRV(0.02)

CALL CURVE(X,Y,N,0)
CALL ENDPL(0)

C'ILL DONEPL
* RETURN

END
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******Program 4****w**********w******~r

*This program is designed for the estimation of spectral lines in
*white noise. The input process xkk) consists of a si.na! in nci.se.
*and a signal may be a single, or mu2ltpe sinusoids. :e c:.n
* aq derived in Section (.)

INTEGER ISEED,K.I 3 Nil NB.RMA ML. D
REAL A(100),B(LOOF100)G 10) GL:~t.05J
REAL Y ,00),YDk53OC).W 5000C,Y:L 3OOC.YD 5o:. ;?.:

REAL PS:~:PJJ.M :D-7
REAL GRD O.10C',5RBv(OC).GR: :,
REAL REf100,1OO),101,Ajv,10C SDSNR AVG AMP APW .E

* Set Adaptation Constant pI and Numbe!r of :teraticns NE

WRITE(5,1)

FORMAT(5X. 'AMtI .5X. NB
REAZ (5 *) AMU NE

* Initialization

c ISPEC=1000

SNR-30.
SD=10**(- (SNR/20))
AMP-SQRT(2.)

AVG-0.
E=F.

C R=1

?I=3.141592654
M=8

MPl=M+l

ISEED=343169
IF (MOD(M,2).EQ.0) THEN

MA=M/2

M!L=MIA-

END IF

DO 10 K=1,100

A (K) =0
B(K)=O
F(K)=0
G (K) =0
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GD (K) =0

SGL(K)= .0 .

GR (K) =0 .

GRB (K)=0
RE ( K) =0
IM(K)-0
Ai (K)=0

Y (K) =0

10 CONTINUE

DO 11. K=1,5000
W (K) =0

YL(K)0O
YLL(K)0O

YD (K) =0

ER (K) =0
INP(K)=0

11 CONTINUE

Do 15 K=1,100

DO 15 L=1,100
PH(KL) =0

PS (K, L) =0

PSD(K,L)0O
GRD(K,L)0O

15 CONTINUE

* Random Number Generation

* (mean zero, unit variance, white sequence)

DO 20 N=1,NB

CALL LNORM(ISEED,RN4,1,1,0)
W(N) = SD*RN+AVG

20 CONTINUE

* LATTICE FILTER

DO 50 K =1,NB

AK=K-1

:NP (K) AMP?*CO -'Sk2-?* !,1S*~)

*)+COS(2*PI*.35*AK) )+W(F)

F(1)=INP(K)
G(1)=INP(K)

DO 60 I = 1M

G(I+1)=GD(li+B(I)*F( I)4

60 CONTINUE
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YL(K)=F(ML+l)
YD (K)-G (ML+l)
YLL(K)=YL(K)+YD(K-MA)

E a YLL(K)

* Updating the Reflection Coefficients

CALL H141S (PH,PS,PSD,GR,GRB,GRD,F,G,GD,B,SGL,E,AIU,ML,HA)
ER(K)=E**2

DO 70 J-l.NL
GD (J) =G (J)

70 CONTINUE
c IF (K.NE.ISPEC) GO TO 50

IF (K.EQ.NB) THEN
c WRITE(6,300) K,INP(K),E
c WRITE(6,301) K,B(l),B(2),B(3),B(4),B(5),B(6),B(7),B(8),B(9)
c R=R+100

* Determine the FIR Coefficients from the Lattice Reflection
* Coefficients

CALL STEPUP (A,B,ML)
IF (MOD(M,2).EQ.0) THEN

DO 80 I21,11/2
80 A(M+2-I)=A(I)

A(M/2+1 )=2*A(MI 2+1)
ELSE

DO 81 1=1,(11+)/2
81 A(M+2-I)=A(I)

END IF
c WRITE (6,600) (I,A(I),I=1,MPl)

* Calculate the Power Spectrum

CALL SPEC (RE,IM,A,AJ,M,PI)
D=100

c WRITE (6,601) (.00S*Z,AJ(Z),Z=1,D)

Plotting the Spectrum

CALL PLOT(AJ,D)
c ISPEC=ISPEC+l000

END IF
50 CONTINUE
c WRITE (6,300) (YLL(K),K=1,NB)
300 FORMAT(10(F1O.7,1X))
301 FORMAT(1X,I5,1X,10(F1O.7,1X))
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60 FRMT(l,1,X,157

600 FORMAT (lX,I5.,5X,F15.7)

STOP
END

SUBROUTINE MLMS(PH,PS ,PSD,GR,GRB,GRD,F,B,BD,R,SGL,EK,AMU,N,HA)
DIMENSION PH(100,100),PS(100,100),PSD(100,100),GR(100),GRB(100)

1,GRD(100,100) ,F(100) ,B(100) ,BD(100) ,R(100) ,SGL(101)
GR(N)=BD(N)
GRE (N)=F (N)
DO 200 1=2,N
PH(I ,1)=BD(N+1-I)
PS(I,1)=F(N+1-I)
1T=I-I.
DO 110 K=1,IT
PH(I ,K+1)=PH(I ,K)+R(N+1-I+K)*PSD(I ,K)
PS(I,K+1)=PSD(I,K)+R(N+1-I+K)*PH(I ,K)

110 CONTINUE
DO 120 K=1,IT

120 PSD(I,K)=PS(I,K)
200 CONTINUE

DO 210 K=2,N
GR(N+1-K)=PH(K,K)
GRE (N+1-K)=PS (KK)

210 CONTINUE
DO 220 K=1,N
DO 220 L=1,MA

220 GRD(K,MA+2-L)=GRD(K,MA+1-L)
DO 230 K=1,N

230 GRD(K,1)=GRB(K)
DO 240 K=1,N

240 GRB(K)=GRD(K,MA+l)
DO 250 K=1,N

250 GR(K)=GR(K)+GRB(K)
DO 260 K=1,N

260 SGL(K').90O*SGL(K)+.10*GR(K)*GR(K)+t.0
DO 270 IL

IF(R(I).GE.1.0) R(I)=0.
IF(R(I).LE.-l.0) R(I)=O.

270 CONTINUE
RETURN
END
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SUBROUTINE STEPUP (A,BML)
DIMENSION A(100),C(100),B(100)
A(Il)=l.
A (2) =B (1)
DO 30 MINC-2,ML
DO 10 J=1,MINC
JB=MINC-J+1

10 C(J)=A(JB)
DO 20 1P=2,MINC

20 A(IP)=A(IP)+B(MINC)*C(IP-1)
A(MINC+1 )=B(MINC) p

30 CONTINUE
RETURN
END

SUBROUTINE SPEC(RE,IM,A,AJ,M,PI)
REAL RE(100),IM(100),A(100),AJ(100),Y(l00)
RE (1)=(1)

DO 91 J=1,100
DO 92 1=1,M
RE(I+1)=RE(I)+A(I+1)*COS(2*I*PI*. 5*J/100)
IM(I+1)=IM(I )*A(I+1)*SIN(2*I*PI*. 5*J/1OO)

92 CONTINUE
AJ(J)=-10.*ALOG10(RE(M+1)*RE(M+1)+IM(M+1)*IM(M+1))

91 CONTINUE
TEMP=AJ(1)
DO 93 L=2,100
IF (AJ(L).GT.TEMP) TEMP=AJ(L)

93 CONTINUE
DO 94 L=1,100
AJ(L)=AJ(L)-TEMP

94 CONTINUE
RETURN
END U

SUBROUTINE PLOT(Y,N) -

DIMENSION Y(N) ,X(100)
c ISTP=N/10 N
c DO 10 J=1,N
dlo X(J)=J

DF=.5/N
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DO 10 K-2,N
10 X(K)-X(K-1)+DF

XMIN=X(l)
DIAX(N)
XSTP=10*DF
IYMIN=Y(l)
IYHAX=Y(l)
DO 20 K=2,N
IF(Y(K) .GT.IYMAX) IYHAX=-Y(K)

IF(Y(K) .LT.IYMIN) IYMIN=Y(K)
20 CONTINUE

IYSTP=(IYMAX-IYMIN) /5
c CALL TEK618
c CALL PRTPLT(72,6)

CALL SHERPA( PARKPARK' ,'A' ,3)
CALL RESET('ALL')
CALL PAGE(8.5,11.0)
CALL HWROT('AUTO-)
CALL XINTAX
CALL AREA2D(.0,2.8)
CAL'" HEIGHT(0.10)
CALL COMPLX
CALL SHDCHR(90.0,1,0.002,1)
CALL HEADIN( FREQUENCY SPECTRUMS' ,100,2 .0,1)
CALL 1NAlE ( 'FREQUENCYS' ,100)
CALL YNAME('MAGNITUDE(DB)$' ,100)
CALL NESSAG('FIGURE 5.21 (M-8 ,SNR-30DB)$1,100,3.0,-0.8)

c CALL MESSAG('MODEL ORDER SELECTION(4 SINUSOIDS)$' ,100,3.O,-0.8)
CALL THKFRM(.03)
CALL FRAME
CALL GRAF(XMIN,XSTP,XMAX,IYMIN,IYSTP,IYMAX)

c CALL THKCRV(0.02)
CALL CURVE(X,Y,N,0)
CALL ENDPL(0)
CALL DONEPL
RETURN
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